WEIGHTED SYLVESTER SUMS ON THE FROBENIUS SET IN MORE VARIABLES

نویسندگان

چکیده

Let $a_1,a_2,\dots,a_k$ be positive integers with $\gcd(a_1,a_2,\dots,a_k)=1$. ${\rm NR}={\rm NR}(a_1,a_2,\dots,a_k)$ denote the set of nonrepresentable in terms $a_1,a_2,\dots,a_k$. The largest integer $\max{\rm NR}$, number $\sum_{n\in{\rm NR}}1$ and sum NR}}n$ have been widely studied for a long time as related to famous Frobenius problem. In this paper by using Eulerian numbers, we give formulas weighted NR}}\lambda^{n}n^\mu$, where $\mu$ is nonnegative $\lambda$ complex number. We also examine power sums numbers some formulae three variables. Several examples illustrate support our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternate Sylvester sums on the Frobenius set

The alternate Sylvester sums are Tm(a, b) = ∑ n∈NR(−1)n, where a and b are coprime, positive integers, and NR is the Frobenius set associated with a and b. In this note, we study the generating functions, recurrences and explicit expressions of the alternate Sylvester sums. It can be found that the results are closely related to the Bernoulli polynomials, the Euler polynomials, and the (alterna...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

On the Set of Limit Points of Normed Sums of Geometrically Weighted I.I.D. Bounded Random Variables

For a sequence of nondegenerate i.i.d. bounded random variables {Yn, n ≥ 1} defined on a probability space (Ω,F ,P) and a constant b > 1, it is shown for Wn = (b − 1) ∑n i=1 b Yi/b n+1 that S (FY1) ⊆ {c ∈ R : P ({ω ∈ Ω : c is a limit point of Wn(ω)}) = 1} = S (FV ) ⊆ [l, L] and that for almost every ω ∈ Ω, the set of limit points of Wn(ω) coincides with the set S (FV ) where S (FY1) and S (FV )...

متن کامل

THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.

متن کامل

strong laws for weighted sums of negative dependent random variables

in this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. the results on i.i.d case of soo hak sung [9] are generalized and extended.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2022

ISSN: ['1340-6116', '1883-2032']

DOI: https://doi.org/10.2206/kyushujm.76.163